Overview of the Degree Program

- **Degree**
 Master of Science (M.Sc.)

- **Regular Program Length**
 4 semester (full-time program)

- **Credit Points (ECTS)**
 120 credit points

- **Language of Instructions**
 English

- **Admission Requirements**
 - A completed bachelor's or equivalent degree in Meteorology or related discipline such as Physics, Mathematics, Geology, Hydrology or Oceanography
 - Necessary minimum requirements completed in the bachelor program in
 - Meteorology of 30 ECTS credit points
 - Physics 30 ECTS credit points
 - Mathematics 12 ECTS credit points
 - If the requirements are not fulfilled completely, a conditional admission is possible
 - Proof of sufficient knowledge of English of at least CEFR B2 level (TOEFL, IELTS, TOEIC, Cambridge Certificate)

- **Limited Capacity**
 No

- **Application Deadline**
 September 30 / March 31 for the 1st semester

Questions?

If you have **general questions** about the degree program, studying at KIT or the **application process**,
Carmen Reck, your student advisor at ZSB:
carmen.reck@kit.edu

If you have **specific questions** concerning the curriculum of the degree program:
Katharina Maurer, your academic advisor at the KIT-Department of Physics:
katharina.maurer@kit.edu

Karlsruhe Institute of Technology (KIT)
Zentrale Studienberatung (ZSB)
Student Advisory Services
Engelbert-Arnold-Strasse 2
Building 11.30
76131 Karlsruhe
Phone: +49 721 - 608 44930
Email: info@zsb.kit.edu
www.zsb.kit.edu

Publisher
Karlsruhe Institute of Technology (KIT)
President Professor Dr.-Ing. Holger Hanselka
Kaiserstrasse 12
76131 Karlsruhe
www.kit.edu

Karlsruhe © KIT 2021
Career Prospects

MSc graduates in Meteorology and Climate Physics have a high level of employability across a wide spectrum of interesting and challenging jobs. These include:

- stay in research and do a PhD, focusing on an academic career
- public weather services such as the German Weather Service (DWD) or private weather companies
- the insurance sector, evaluating risks due to weather and climate hazards
- the energy sector, providing reliable forecasts and predicting critical situations
- climate services, creating information resources and platforms for decision makers to adapt and prepare for climate change
- data science, processing big data in economy and engineering

Characteristic Features of the Degree Program at KIT

- Comprehensive education in meteorology and climate physics
- Studying at one of the largest and renowned institutions for atmospheric research in Germany
- Study work in small, well supervised groups
- Large percentage of practical experience (exercises, project work)
- Research-oriented teaching and high potential of active involvements in research projects
- For prospective doctoral candidates: Karlsruhe House of Young Scientists (KHYS)
- Campus close to the city of Karlsruhe, known for its warm and intercultural climate

Program Structure

<table>
<thead>
<tr>
<th>Semester</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st semester</td>
<td>Atmosphere and Climate Processes</td>
</tr>
<tr>
<td></td>
<td>Components of the Climate System (12 CP)</td>
</tr>
<tr>
<td></td>
<td>Atmospheric Processes (12 CP)</td>
</tr>
<tr>
<td></td>
<td>Elective I (14 CP)</td>
</tr>
<tr>
<td>2nd semester</td>
<td>Applied and Experimental Meteorology</td>
</tr>
<tr>
<td></td>
<td>Experimental Meteorology (14 CP)</td>
</tr>
<tr>
<td></td>
<td>Applied Meteorology (10 CP)</td>
</tr>
<tr>
<td></td>
<td>Elective II (4 CP)</td>
</tr>
<tr>
<td>3rd semester</td>
<td>Research Work</td>
</tr>
<tr>
<td></td>
<td>Specialization Phase: Scientific Concept Development (10 CP)</td>
</tr>
<tr>
<td>4th semester</td>
<td>Master thesis (30 CP)</td>
</tr>
</tbody>
</table>

Meteorology and Climate Physics (M.Sc.)

The purpose of the master’s degree program is to deepen and complement the scientific qualification the student has acquired in the bachelor’s degree program. The first year consists of lectures, exercises and practicals (compulsory and elective) followed by an individual research project in Year 2.

The lectures, course work, computer and modelling classes in the first semester are devoted to individual components of the climate system and to climate dynamics and change as well as to cloud physics, radiation, aerosols, chemistry and energetics of the atmosphere.

The second semester module Experimental Meteorology is comprised of classes on individual measurement platforms, advanced practical courses and a one-week excursion to observatories and labs, whereas the module Applied Meteorology focuses on numerical weather prediction, air pollution, meteorological hazards, energy meteorology and data analysis.

Additionally, during their first and second semester, students acquire detailed skills in an elective from a wide range of other natural sciences as well as generic competences in soft skills areas such as scientific writing, presentation, time management or languages (including a free German course).

During semester 3 students individually develop a chosen topic from the rich research portfolio of the Institute of Meteorology and Climate Research (IMK) into a full scientific concept.

With the completion of the Master’s thesis in semester 4, the graduates demonstrate that they are capable of applying scientific knowledge and methods to independently solve complex research problems.